

CALTCM

CALTCM

9

7

Webinar Faculty

Heather D'Adamo, MD

Staff Attending Physician, Community Living Center, VA Greater Los Angeles; Assistant Professor, UCLA Geriatrics; Director of SNF and LTC Curriculum of the VA UCLA Geriatrics Fellowship

May 11, 2020

Webinar Faculty

Dana Saffel, PharmD President, CEO; PharmaCare Strategies, Inc.; Board Member; American Society of Consultant Pharmacists

May 11, 2020

May 11, 2020

CALTCM

8

Webinar Faculty

Michael Wasserman, MD, CMD Geriatrician, President, CALTCM, Medical Director, Eisenberg Village, Los Angeles Jewish Home

May 11, 2020

Webinar Faculty

Jay Luxenberg, MD Chief Medical Officer, On Lok CALTCM, Wave Editor-in-Chief

CALTCM

14

AMA | Original In

Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area lson, MD, MPH: Jamie S. Hirsch, MD, MA, MSB: Mangala wford, MD, PhD: Thomas McGinn, MD, MPH: Karina W. D rasimhan, DO:

- 5700 patients (median age, 63 years).
 The most common comorbidities were hypertension (3026; 56.6%), obesity (1737; 41.7%), and diabetes (1808; 33.8%).
- At triage, 30.7% of patients were febrile, 17.3% had a respiratory rate greater than 24 breaths/minute, and 27.8% received supplemental oxygen.
 The rate of respiratory virus co-infection was 2.1%.
- 14.2% were treated ICU
- · 12.2% received invasive mechanical ventilation, · 3.2% needed dialysis
- 21% died
- As of April 4, 2020, for patients requiring mechanical ventilation 3.3% were discharged alive and 24.5% died CALTCM

May 11, 2020

in	Hospital Wards, Wuhan, China, 2020	ere Acute Respiratory Syndro	ome Coronav	irus 2
	Table 1 Results of testing for SARS-CoV-2 in intensive care unit, Hu	Joshenshan Hospital, Wuhan, China, 2020*		
	Area, sample	Intense positive/weak positive/negative1	Rate of positivity, %	
	Contaminated area			
	Isolation wards			
	Poor	6/1/3	70	
	Computer mouse	4/2/2	75	
	Trash can	0/3/2	60	
	Sickled handral	2/4/8	42.9	
	Patient mask	1/1/3	40	
	Air outlet filter	4/4/4	66.7	
	Indoor ein near the air outlet (sampling site 1 in <u>Figure 2</u> , panel A)	2/3/9	35.7	
	Indoor air near the patients (sampling site 2 in <u>Figure 2</u> , panel A)	2/5/10	44,4	
LTCM	indoor air near the doctors' office area (sampling size 3 in Figure 2, o	anel A) 0/1/7	12.5	

		ING INFECTIOUS D		ISS	N: 1080-6059
	Hospita	nd Surface Distribution of I Wards, Wuhan, China, 20 Table 2	Severe Acute Respiratory S 020	yndrome Corona	virus 2
		Results of testing for SARS-CoV-2 in gene	ral ward, Huoshenshan Hospital, Wuhan, Chi	na, 2020*	
		Area, sample	Intense positive/weak positive/negative*	Rate of positivity, % Av	
		Contaminated area			
		Isolation ward	1/1/11	15.4	
		Floor	0/1/11	8.3	
		Dearkneb	0/1/11	8.3	
		Air outlet	0/0/12	0	
		Sickbed handrall	1/1/8	20	
		Patient mask	0/2/9	18.2	
		indoor air (sampling site 1 in <u>Figure 2</u> , panel Q	0.075	0	
		indoor air (sampling site 2 in <u>Figure 2</u> , panel C)	10/01	15.4	
FCM					May 11, 2020

May 11, 2020

May 11, 2020

nature medicine

Antibody responses to SARS-CoV-2 in patients with COVID-19

- Antibody responses to SARS-CoV-2 in 285 patients with COVID-19.
 Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG).
- Both IgG and IgM titers plateaued within 6 days after seroconversion.
 Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections.

CALTCM

25

Take Home Message

- Serological testing can identify asymptomatic patients or symptomatic patients with negative PCR
- Specificity >99% and sensitivity 96% identify past SARS-CoV-2 infection in people who were infected at least 1 to 3 weeks previously.
- Antibody test results should not be used to diagnose someone with an active SARS-CoV-2 infection

CALTCM

26

May 11, 2020

27

ABCD's of COVID-19, then

- Awareness: symptoms
- Behavior: screening; absence of SARS-Cov2 testing;
- Containment: practices to disrupt the spread, PPE
- Decisions: open communication with local, state and federal entities, advance care planning; create a clinical decision tree

CALTCM

May 11, 2020

Ar	ntivirals			No drug is currently FDA- approved to treat COVID-1
	Drug	Proposed MOA	Drug	Proposed MOA
	ACEIs/ARBs (eg, losartan, telmisartan, ramipril)	Blocks viral entry by inhibiting ACE2 receptors	lvermectin	In vitro activity against SARS-CoV-2
	Atovaquone (Mepron)	Activity against RNA-dependent RNA polymerases; in vitro activity against arboviruses (eg, Zika)	Lopinavir/ritonavir (Kaletra)	Interferes w/ maturation of viral particles by inhibiting protease enzymes
	DPP-4 inhibitors (eg, linagliptin)	Blocks viral entry; reportedly blocks MERS-CoV entry receptor (DPP-4)	Nitazoxanide (Alinia)	Interferes w/ host-regulated pathways involved in viral replication rather than a virus-targeted mechanism; broad-spectrum in vitro activity against various viruses, including coronaviruses
	Famotidine	Binds to protease implicated in viral replication	Sirolimus (Rapamune)	Targets mTOR complex involved in replication of various viruses, including coronaviruses
	Favipiravir China & Japan	Terminates viral replication by binding to RNA-dependent RNA polymerase	Tranexamic acid (Lysteda, Cyklokapron)	Reduces infectivity and virulence by inhibiting conversion of plasminogen to plasmin (plasmin interacts w/ viral surface proteins to increase binding to cellular receptors)
	Remdesivir (EAU)	Terminates viral replication by binding to RNA-dependent RNA polymerase; circumvents proofreading activity by exonucleases	Umifenovir ^{China & Russia}	Inhibits fusion of viral and cellular membranes by intercatating into membrane lipids
	Hydraxychloroquine Chloroquine	Inhibits viral entry and replication via intracellular alkalinization, interferes w/ maturation of viral particles through impaired glycosylation; indirect immunomobulatory effects		

mmu	inomodulators		approved to treat COVID-1
Drug	Proposed MOA	Drug	Proposed MOA
Acalabrutinib (Calquence)	Reduces inflammatory response by inhibiting malignant B-cell proliferation via inhibition of Bruton tyrosine kinase (BTK)	Ibrutinib (Imbruvica)	Reduces inflammatory response by intsbiting malignant B-cell proliferation via inhibition of Bruton tyrosine kinase (BTK)
Anakinra (Kinerret)	Reduces inflammatory response by inhibiting IL-1 receptors	Leflunomide (Arava)	Reduces inflammatory response by inhibiting dihydrocrotate dehydrogenase; in vitro effects against SARS-CoV-2
Azithromycin	No direct antiviral activity; indirect immunomodulatory effects	Prazosin	Reduces inflammatory response by blunting catecholamine effects on cytokine production
Baricitinib (Olumiant)	Reduces inflammatory response by disrupting cytokine pathways via inhibition of janux-associated kinases (JAK)	Ravulizumab (Ultomiris)	Reduces inflammatory response by modulating activity of complement pathways
Canakinumab (Ilaris)	Reduces inflammatory response by inhibiting IL-1 receptors	Ruxolitinib (Jakafi)	Reduces inflammatory response by disrupting cytokine pathways via inhibition of janus-associated kinases (JAK)
Colchicine	Reduces inflammatory response by inhibiting interleukin pathways vie interference wi inflammasome complex assembly; reduces cell infectivity by interrupting endocytosis wie inhibition of microtabule polymerization	Sarilumab (Kefzara)	Reduces inflammatory response by inhibiting IL-6 receptors
Corticosteroids	Reduces inflammatory response via inhibition of multiple cytokines	Selinexor (Xpovio)	Reduces inflammatory response by disrupting cytokine pathways via inhibition of exportin 1 (XPO1); XPO1 inhibitors have activity against many visuses, incl RNA visuses, and expected to have activity against SARS-CoV
Duvelisib (Copiktra)	Reduces inflammatory response by disrupting cytokine pathways via inhibition of phosphatidylinositol 3-kinase (PI3K)	Situximab (Sylvant)	Reduces inflammatory response by inhibiting IL-6 receptors
Eculizumab (Soliris)	Reduces inflammatory response by modulating activity of complement pathways	SSRIs (fluoxetine, fluvoxamine)	Reduces inflammatory response by modulating activity of complement pathways
Etoposide	Reduces inflammatory response; has been effective for cytokine storm caused by other diseases; topolaomenase II inhibitors suppress RMA virus replication in vitro	Statins (Atorvasttin)	Reduces inflammatory response by miligating cytokine activation pathways; attenuates CV component or complications assoc w/ COVID-19; epidemiological data suggest protective effects in influenza pneumonia
	•	Tocilizumab (Actemra)	Reduces inflammatory response by inhibiting IL-6 receptors

Drug	Speculated Benefit
Astragalus	Has been suggested for COVID-19 trybrevention based on immunostimulatory effects & junfammatory cytokim though others raise theoretical concernas about cytokine storm potential Traditionally used in Chinese medicine for immune boosting against coldflu, now suggested w/ or w/o other he for COVID-19 Just standardization of regimens lacking
Echinacea	Has been suggested for COVID-19 prevention based on historical use in coldful sr relief Cytokine storm debate . Some suggest OK for prevention, bat should dré @ COVID-19 sr conset, due to possi immune inflammatory up-regulation; theory based on in vitro E purpures study on t inflammatory cytokine prod in human macrophages and other limited data
Elderberry	Has been suggested for COVID-19 toprevention based on historical use in colditius ar relief Cytokine starm datate. Some suggest OK for prevention, but should did © COVID-19 as conset, due to possi immune inflammatory up-regulation; theory based on in vitro S nigra (Sambuco) study on †inflammatory cytok anduction in human sprocessition.

